
Toward Safe Reuse of Product Family Speci�cations

Robyn R. Lutz�

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

Abstract

Upcoming spacecraft plan extensive reuse of software
components, to the extent that some systems will
form product families of similar or identical units
(e.g., a eet of spaceborne telescopes). Missions such
as these must be demonstrably safe, but the conse-
quences of broad reuse are hard to evaluate from a
software safety perspective. This paper reports expe-
rience specifying an interferometer (telescope) sub-
system as a product family and supplementing the
speci�cation with results from a hazards analysis.
Lessons learned are discussed in three areas: (1) in-
tegration of hazards analysis with the product family
approach; (2) modeling decisions that have safety im-
plications (e.g., how to handle near-commonalities,
establishing a hierarchy of variabilities, and speci-
fying dependencies among options); and (3) tracing
the product family requirements to the design of the
reusable components and to the design of a speci�c
product. The product family approach was e�ec-
tive at identifying some latent safety requirements
and in validating the design of the reusable software.
The product family approach lacked an adequate way
to distinguish architectural variations from run-time
variations in the model.

1. Introduction

Upcoming spacecraft plan extensive reuse of software
components, to the extent that some systems will
form product families of similar or identical units

�Proceedings of the Symposium on Software Reusability
(SSR'99), Los Angeles, CA, May 21-23, 1999. Author's mail-

ing address: Dept. of Computer Science, Iowa StateUniversity,

Ames, IA 50011-1041.

(e.g., a eet of spaceborne telescopes). Missions such
as these must be demonstrably safe, but the conse-
quences of broad reuse are hard to evaluate from a
software safety perspective [1, 6, 13, 16, 19]. This
paper reports experience specifying an interferome-
ter (telescope) subsystem as a product family, per-
forming a hazards analysis to enhance its software
requirements, and using the requirements to evaluate
the design of a reusable component.

Fig. 1 shows an overview of an interferometer. An
interferometer is an instrument (roughly, a collection
of telescopes) that makes careful measurements of the
locations of stars. The interferometer uses a number
of special mirrors to collect light from these stars.
The collected light is combined and made to \inter-
fere." By calculating the interference, highly accurate
position measurements can be made. The output of a
set of small, geographically distributed collecting in-
struments is thus used to synthesize the performance
of a single larger instrument [12, 18, 24]

Spaceborne optical interferometers have been iden-
ti�ed as a critical technology for many of NASA's
21st century missions to explore the origins of stars
and galaxies and study other Earth-like planets [14].
Among the spaceborne interferometers under devel-
opment or proposed for future development are the
Spaceborne Interferometry Mission, the New Mille-
nium Separated Spacecraft Interferometer, and the
Terrestrial Planet Finder. Anticipated launch dates
range from 2001 to 2020 or beyond. Ground-based
interferometer projects, including the Keck Interfer-
ometry Project, are also underway [18].

One of the technological challenges involved in in-
terferometers is the very high precision needed to
achieve the required resolution. Light arrives at one
of the interferometer's mirrors sooner than at the
other. Prior to arrival at the beam combiner, optical
path delay is added to the light by means of a delay
line component. The delay line compensates for the
di�erence in time between when starlight arrives at
the mirrors [8, 9, 10, 11, 12].

Another component of the interferometer, the



Starlight

Beam

Starlight

Combiner

Beam

Telescope Telescope

Beam

Figure 1: Interferometer System Overview

fringe tracker, provides constant feedback to the de-
lay line software regarding resolution to guide this ad-
justment. Due to their criticality, these two compo-
nents, the Delay Line software and the Fringe Tracker
software, were chosen as initial pieces for de�nition of
the interferometer product family.
Fig. 2 shows the three phases of the product fam-

ily approach as applied to the interferometer soft-
ware. The contributions made to this application by
the product family approach were (1) to provide a
structured speci�cation of both the commonality and
variability requirements, (2) to analyze the product
family requirements from a safety perspective and
improve them accordingly, and (3) to evaluate the
design of reusable software components by checking
whether they satis�ed the product family require-
ments. Section 2 of the paper describes the �rst
step, the speci�cation of the product family. Sec-
tion 3 discusses the second step, the hazard analysis
of the product family. Section 4 describes the results
of the third step, design evaluation.
Lessons learned are discussed in three areas:

1. integration of hazards analysis with the product
family approach;

2. modeling decisions that have safety implications
(e.g., how to handle near-commonalities, estab-
lishing a hierarchy of variabilities, and specifying
dependencies among options); and

3. tracing the product family requirements to the
design of the reusable components and to the

design of a speci�c product.

The product family approach proved e�ective at iden-
tifying latent safety requirements and in validating
the design of the reusable software. The product fam-
ily approach lacked an adequate way to distinguish
architectural variations from run-time variations in
the model.

2. Product Family De�nition

Organizationally, a group was already in place to
facilitate reuse among the interferometer projects
when the product family work reported here began.
That group was tasked with identifying and providing
reusable, generic software components to the various
interferometer projects. The group consisted of ex-
perienced engineers and programmers, led by people
with extensive backgrounds in developing interferom-
eters.
Their development of the reusable software com-

ponents was evolutionary. It was strongly object-
oriented, with each iteration providing cleaner in-
terfaces and taking advantage of additional oppor-
tunities for generalization (class inheritance). The
documentation they produced was primarily tex-
tual description and UML diagrams, with the de-
sign and code sometimes outstripping the documen-
tation. The available documentation, together with
detailed presentations during architectural reviews,
formed the basis for the speci�cation of the product
family requirements.
The documentation from the reusable software

components group emphasized the common features
of the interferometer software, since this was their
deliverable. The product family approach, since it
describes both the common and the distinct features
of the various systems, provided a useful safety check
and counterpoint to the generic software develop-
ment.
Some of the variations among the interferometers

were discussed in the documentation of the require-
ments for the reusable software. Other variations
were gathered from extensive web pages describing
the interferometers, during review of the initial prod-
uct family speci�cations, as will be discussed below,
and from comments during the architectural review.
In general, the speci�c interferometer projects had
not started to document software requirements at this
early stage but, where such documentation existed, it
was consulted for additional variations.
In developing the product family requirements, the

process described in the SPC (Software Productivity
Consortium) guidebook was followed for the domain



(1)

(2)

Develop Product

Perform Preliminary
Hazards Analysis

Safety

Specifications

Requirements

Requirements for 
common reusable software

Projects’ requirements

Mapping

(3)
Evaluate Design 

of Projects’
Common Software

Family

Figure 2: Three Phases of the Product Family Application

de�nition and domain speci�cation. [21]. SPC rec-
ommends that product family requirements be ex-
pressed in such formats as structured, informal text;
assertions; or formal or semi-form speci�cations.

For the domain de�nition, the domain was �rst
de�ned informally as the Delay Line and Fringer
Tracker subsystems of interferometers. A standard
terminology was then de�ned in the form of a glos-
sary. The glossary included terms such as \path
length" and \baseline vector" that are used in the
description of the software capabilities. The glossary
was repeatedly corrected and supplemented through-
out the application in response to additional input
and updates. One of the lessons learned (discussed
in Section 5.2) was that each project had a slightly
di�erent vocabulary and slightly di�erent de�nitions
for some standard terms. Precise de�nitions helped
uncover subtle variations among the projects' inter-
ferometers.

The largest part of the initial e�ort was in what
SPC calls \Establish domain assumptions." The do-
main assumptions are divided into commonality as-
sumptions and variability assumptions. Commonal-
ity assumptions are characterisitics shared by all the
systems in the domain. Variability assumptions are
characterisitics not shared by all systems in the do-
main.

Examples of commonality assumptions are \[Delay
Line] receives closed loop target from Fringe Tracker
for �ne-tuning" and \Automatically stops delay line
[hardware] when end of track is reached with software
limit feature." Examples of variability assumptions
are \The baseline vector knowledge accuracy needed
can vary" and \The number of delay lines can vary."
Forty commonality assumptions and twenty variabil-
ity assumptions were initially identi�ed for the delay
line and fringe tracker components. As will be dis-
cussed below, these numbers changed as the speci�-
cations were corrected and re�ned.

The data items needed to describe a particular sys-
tem in this product family were identi�ed from the
variabilities. Each variability identi�ed above had to
be quanti�ed by one or more parameters. These pa-
rameters of variability de�ne the range of customer
requirements and decisions that must be made to
specify a particular member of the product family
(i.e., a particular interferometer) [21, 22].

Ardis and Weiss propose the inclusion of the follow-
ing information for each parameter of variability: Pa-
rameter, Binding, Variability, Default, Domain, and
Comments [2, 3]. This information was speci�ed for
the delay line using an automated toolset, SCR* from
the Naval Research Laboratory, with the parameters
of variability being documented as monitored vari-



ables [7]. The use of this toolset provided the oppor-
tunity for later automated analysis. SCR* produces
table-based speci�cations that are easy to read, up-
date, and distribute on the web. The automated anal-
ysis tools interface seamlessly with the speci�cations.
An accurate, reusable requirements model provides a
�rm base for building members of the product family.
As the requirements mature or change, the SCR ta-
bles can be updated and the automatic checks re-run
to give some assurance of continued consistency.

The SCR* toolset allowed precise speci�cation of
the parameters, the variabilities that they map to,
and their default value. Twenty-three variables and
four new data types were de�ned. The SCR Vari-
able Dictionary produced a tabular description of
each variable with �elds for the data type, initial
value, accuracy required and comments. The com-
ment �eld was used to provide a reference to the vari-
ability that produced this parameter of variability, to
indicate the allowable range of values (e.g., the num-
ber of delay lines can range from 0 to 8 in current
planning), and to indicate the time the value is de-
termined (i.e., bound at speci�cation time, compile
time or run time).

The number of parameters of variability is here
(oddly) less than the number of variabilities. This
is because one variability relating to the targeting
of the interferometer was decomposed into additional
variabilities and parameters of variability during the
construction of the decision model. The higher-level
variability was retained in the model for easier trace-
ability to the requirements documents. However, it
contributed no parameters of variability of its own,
and could have been deleted without a�ecting the
model's consistency.

A prototype SCR* requirements speci�cation was
produced for the delay line component by Frank
Humphrey. The SCR* speci�cation documented the
delay line modes and the events that caused tran-
sitions among them. The requirements speci�ca-
tion demonstrated the SCR* capabilities for auto-
matic analysis (e.g., parsing, type-checking, consis-
tency checks, and some completeness checks) and
simulation of the requirements.

The Speci�cation Assertion Dictionary feature pro-
vided in SCR* was used experimentally to document
some dependencies among the variabilities. For ex-
ample, an interferometer can be either a guide or a
science interferometer. An interferometer can have,
or not have, a feedforward target. Each of these state-
ments captures a possible variability. A dependency
among these variabilities is that a feedforward target
can only exist if there is a guide interferometer. Us-
ing the Speci�cation Assertion Dictionary, predicates

such as this could be documented and checked.

Since hazards often involve subtle interactions and
undocumented assumptions perceptible only to do-
main experts, formats that promote expert review
contribute to safe reuse. It was found that the ap-
plication engineers preferred the structured English
speci�cation over the formal speci�cation for reviews
of the requirements. Rapid, iterative feedback by
experts was thus most easily achieved by maintain-
ing the accuracy and currency of the textual domain
speci�cation.

3. Hazards Analysis

\Hazards analysis is at the heart of any e�ective
safety program," according to Leveson [15]. A Pre-
liminary Hazards Analysis (PHA) was performed for
the target subsystem. Input to the process included
the existing documentation for the delay line compo-
nents on the various interferometers, the delay line's
interactions with the system, presentations, and dis-
cussions. Review of these yielded a list of hazards
involving delay lines that might occur during opera-
tions.

The hazards were then analyzed to see if the exist-
ing product family requirements provided mitigation
of the hazards. In some cases, an additional safety re-
quirement could be derived and added to the product
family requirements.

Fourteen hazards were identi�ed for the delay line
component. A high-level summary of the hazards
is shown in Table 1. The second column indicates
the current status of the hazard. \Beyond Scope" in
this column indicates that mitigation of the hazard
is beyond the scope of the delay line software (i.e.,
either a hardware responsibility or associated with
other software). \Handled" indicates that the exist-
ing product family requirements prevent or handle
the hazard. \New" in the column shows that an ad-
ditional software safety requirement was derived from
the hazard analysis and proposed for inclusion in the
product family requirements. \Open" means that it
is still unclear what the requirement should be (e.g.,
exactly what kinds of graceful degradation are possi-
ble while still retaining the scienti�c usefulness of the
instrument).

Two hazards were controlled by existing product
family requirements. Four additional safety require-
ments were recommended for addition to the product
family requirements as a result of the PHA. Three
of these involved additional reasonableness checks on
the validity of the input or the output. One involved
the addition of a requirement for a watchdog timer.



Number Hazard Status

1. Can't match delay New
2. Wrong position Open
3. Wrong velocity New
4. Hardware failure Beyond Scope
5. Hardware failure Beyond Scope
6. Acceleration too high New
7. Invalid parameter New
8. Runs o� track Handled
9. Fringe tracker to wrong delay line Beyond Scope
10. Interface failure Beyond Scope
11. Hardware failure mode Beyond Scope
12. Maintenance failure Beyond Scope
13. Maintenance failure Beyond Scope
14. Hardware failure mode Handled

Table 1: Summary of Results of Preliminary Hazard Analysis

Incorporating the results of the preliminary hazards
analysis into the product family approach allowed
four derived software safety requirements to be added
to the product family requirements.
Some additional software safety requirements can

be derived from the PHA but are outside the scope of
the delay line software (e.g., a software check that the
commanded con�guration or cross-strapping is per-
mitted). Further analysis (e.g., a fault tree analy-
sis [16]) of the hazards can help identify safeguards
against these remaining hazards.

4. Design Evaluation

The third piece of this work was to evaluate the de-
sign of the reusable software components that were
being developed against the product family require-
ments. Each of the twenty commonality requirements
for the Delay Line Component was traced to the ex-
isting design documentation for the generic software
and to the design documentation for the �rst interfer-
ometer (a testbed version) [8, 9]. These design doc-
uments were preliminary drafts containing interface,
blackbox (i.e., functional) descriptions of tasks trig-
gered by events, and some state transition diagrams
and sequence diagrams. The results from the design
evaluations are merged here since no interesting dif-
ferences among the two design evaluations emerged
(a tribute to the reusable software component group's
work).
One result of the design evaluation was that three

of the commonalities were not traceable to the pre-
liminary design. Another three requirements were

implied in the design (e.g., evidently embedded in the
algorithms) but were not explicitly addressed. These
numbers don't include the four commonality require-
ments derived from the preliminary hazards analysis,
since they were too low-level to be traced to this de-
sign document.

It should be noted that the presence of product
family requirements not traceable to the software de-
sign does not indicate a design error, since the generic
reusable software is not responsible for providing all
common services. However, the mismatches between
product family requirements and software design in-
dicate points at which a product family design would
diverge from the reusable software component design.
The mismatches may also indicate areas in which fu-
ture customer expectations of genericity will not be
served by the available software.

On the other hand, several features present in the
design were not included in the product family re-
quirements, but should have been. For example, one
interface, the error stream that outputs data to other
components of the interferometer, was in the design
but missing in the requirements. In addition, two
event-driven tasks in the design (e.g., commanding
the delay line to a home position) were missing in
the product family requirements. Finally, two design
features (e.g., clearing a counter) were implied but
not made explicit as required capabilities.

The design was also checked to see that it did not
preclude any of the thirty-�ve variabilities. Of these,
�ve were out-of-scope of the delay line component
design (e.g. the variability \The number of delay
lines can vary" is handled at a higher level than the



delay line component, which is instantiated once for
each delay line. An additional three of the thirty-�ve
variabilities were too detailed to check against the
top-level design (e.g., calibration requirements) and
were deferred to the detailed design.
More interesting is that one variability, dealing

with a range of possible values, may be precluded by
an implicit design assumption that the range is more
limited. One other variability was violated by the de-
sign, but investigation revealed that it was the vari-
ability that was in error. The variability described
the cross-strapping (con�guation) of the delay line
and fringe tracker, but assumed a one-to-one cor-
respondence between them, in accordance with the
available requirement documentation. The design
states that the delay line receives targets from one or
more fringe tracker components, i.e., a one-to-many
relationship, a correct reection of the actual require-
ments [9].
An additional eight issues relating to the design

or the preliminary design documentation were iden-
ti�ed during the course of the evaluation of the de-
sign against the product family requirements. One of
these involved a question regarding the architecture
of the component. Others dealt with inconsistencies
in the description, information that needed to be in-
cluded in future versions, and one interface misnomer.
The use of the product family requirements for de-

sign evaluation was e�ective in two ways. First, trac-
ing the requirements to the design agged possible
omissions in both the reusable and the individual de-
sign. Second, it improved and, to some extent, vali-
dated the adequacy and accuracy of the current prod-
uct family requirements preparatory to future, more
extensive development. The design evaluation was
a two-way street: the design omitted some features
needed to satisfy the product family requirements,
and the product family requirements omitted some
features, such as error handling, addressed in the de-
sign.

5. Discussion and Conclusions

5.1 Modeling Decisions

In the course of the speci�cation and analysis of the
product family requirements, modeling decisions with
safety implications were made. The discussion that
follows describes the alternatives, the trade-o�s, the
choices that were made, and{with hindsight{the rec-
ommended choices.

� Near-commonalities

Near-commonalities, in which the commonality

was true for almost all the systems in the do-
main, frequently had to be modeled. As an
example, one near-commonality was \Receives
Open Loop Target command [from a particular
computer]". However, one interferometer will in-
stead get all its targets from pre-programmed se-
quences. Seven of the nine commonalities chal-
lenged by the review were true in all but a single
member of the product family. This one inter-
ferometer is planned as a demonstration project
of speci�c technical capabilities. Consequently,
it does not require some features needed by the
subsequent scienti�c missions. The other two of
the nine commonalities challenged by the review
were also each true for all but one product family
member (a di�erent one in each case).

These near-commonalities can be represented as
variabilities. This choice has the advantage of
more explicitly calling out the variations that
have to be addressed when a project uses the de-
cision model to build a new system. Since unsafe
reuse often involves erroneous assumptions of
commonality, classifying the near-commonalities
as variabilities, with notations as to their near-
ubiquity, was the approach �rst taken.

However, an alternative is to introduce a param-
eter of variability that enumerates the speci�c
interferometers and then represent a near- com-
monality, call it NC, that is true for all except
product family member i as a commonality of
the form \If not member i, then NC." Such state-
ments, or constrained commonalities, are invari-
ants over the domain.

It is anticipated that how best to model near-
commonalities will be a recurring issue in prod-
uct family evolution. In a business study of
the Sony tape transport (Walkman), the au-
thors posit that the competitive advantage is
skill in managing the evolution of the product
family [20]. Dikel, et al., discuss the risk of \ar-
chitecture deterioration" as commonalities erode
[4]. Much has been written about the need to
fully anticipate the expansion of options in an
evolving product family. However, given the fre-
quency with which projects' scopes are reduced
after development begins in response to budget
or schedule constraints, unanticipated reduced
functionality also occurs.

The product family requirements need to, as
much as possible, anticipate and model the range
of possible reductions. Some of these reduc-
tions in functionality will turn commonalities
into near-commonalities. Whether represented



as variabilities or as constrained commonalities,
safe reuse mandates that exceptions to the as-
sumption of commonality be speci�ed. Exten-
sive cross-referencing then allows ready identi�-
cation of the near-universality of the requirement
from any point of entry into the requirements
speci�cation.

� Dependencies among options

How to model the dependencies among the vari-
abilities is another modeling decision that had
to be addressed in this application. The SPC
process anticipates that each new project (fam-
ily member) will be developed by determining an
appropriate set of choices from among the set of
variabilities. An area of concern for safe reuse
is whether dependencies exist among these vari-
abilities and, if so, how to represent them and
check that they are satis�ed for each new family
member.

These are constraints on the decision model of
the form, \If you choose option A for variability
V1, then you must choose option B for variabil-
ity V2." There were several such dependencies
to represent for the delay line. For example, one
variability is whether or not cross-strapping (re-
con�guration) is possible for this particular in-
terferometer. Another variability is whether or
not the interferometer that a delay line is on can
shift. However, disallowing cross-strapping com-
pels the value of the second variability.

There are several ways to model such dependen-
cies among variabilities. The SPC guidebook
suggests as a heuristic that decisions, such as
mutually dependent decisions, be grouped and
that the logical connections between the deci-
sion groups then be de�ned. Ardis suggests
writing such constraints as commonalities, where
the commonality is the required relationship be-
tween the parameters of variation. To illustrate
this, we use a simple invariant. (Expert review
later revealed the alleged invariant to be false
in some situations, but that inconvenient truth
will be ignored for a moment). One variability is
that the number of delay lines varies. Another
variability is that the number of fringe trackers
varies. A dependency among the variabilities is
that the number of delay lines must equal the
number of fringe trackers. This constraint, as
Ardis points out, is in fact a commonality; all
interferometers in this product family must have
the same number of delay lines and fringe track-
ers.

In this case, the number of fringe trackers and
number of delay lines are parameters of varia-
tion, represented in the SCR variable table as
monitored variables. The dependency among
variabilities was recorded in the SCR Speci�ca-
tion Assertion Dictionary as an assertion stating
that the two parameters of variation are equal.

� Hierarchy of variabilities

A modeling question that was investigated was
whether the interferometers could be organized
into a hierarchy such that all the interferometers
grouped at a single node share the same value for
many parameters of variability. This question
was, for this application, answered largely in the
negative, but more work is needed to answer it
for larger product families.

A tree was constructed with the top node being
all interferometers for which there are no param-
eters of variability with a shared value among all
interferometers. (If they all had the same value,
we would have an additional commonality.) At
the second level of the tree were two nodes,
spaceborne interferometers and groundbased in-
terferometers. At the third level of the tree,
the spacebased interferometers were divided into
�xed-axis collectors and formation-ying collec-
tors, and so on.

This approach was discarded for two reasons.
First, there were several possible trees, with of-
ten no compelling reason to select one tree over
another. For example, perhaps the branch at
the second level should be into prototypes and
non-prototypes, rather than into spaceborne and
groundbased. Both hierarchies are reasonable al-
ternatives. Counting up the number of param-
eters of variability with shared values in each
of the alternative trees is possible but not read-
ily scalable, and lacks the intuitive appeal of an
agreed-upon partitioning.

Second, while family members at a node did
share the same value for some parameters of vari-
ability, the hierarchy did not provide additional
useful structure or insight in this application.
This was largely due to the fact that the number
of variabilities was manageable and that most of
the branch points in the hierarchy were already
known to be key boolean variables in the speci-
�cation (e.g., whether or not the interferometer
had a �xed axis for its baseline).

For larger product families, it may be that a hier-
archy of variabilities would be bene�cial. In gen-
eral, being able to group the variabilities, much



as SPC recommends grouping decisions in the
decision model, would seem to simplify reuse and
simplify the safety analysis of the variabilities.
However, in this application, the e�ort did not
pay o�.

� Distinguishing types of variabilities

Two di�erent types of variabilities exist for
the interferometer product family. The �rst
type, and the most common, describes vari-
ations among the interferometers' architecture
(e.g., what actuators the delay line controls),
hardware con�guration (e.g., whether the base-
line is �xed or variable), or choice of algorithm
(e.g., for dither calibration). This type of vari-
ation is determined at speci�cation time and is
constant for each member of the product family.

The second type of variability describes dynamic
variations among the interferometers. These are
variabilities that, for a particular member, can
vary over time. An example is what kind of tar-
get is selected (e.g., diagnostic or feedforward).
Another example is if the �ltering algorithmused
depends on some property of the data received
[22]. These variations involve dependencies of
the required behavior on run-time scenarios.

Looking at examples of other product family
speci�cations provided informally to the author,
it appears that this distinction is a common is-
sue. The requirements speci�cation for some
members' behavior is based in part on run-time
variations in the environment.

Ardis and Weiss handle this issue by document-
ing the binding of each parameter of variabil-
ity. Each parameter is bound at speci�cation,
compile, or run-time in their approach. This
is valuable information for safety analyses since
it distinguishes what is constant for a member
from what varies dynamically for that member.
However, even with the binding information, the
product family approach still collapses the deci-
sion model and the requirements speci�cation for
a particular member into a single structure. The
representation here of both types of parameters
of variability as monitored variables in the SCR
speci�cation also fails to adequately distinguish
the two types of variability. More work, perhaps
along the lines of [23], is needed to better repre-
sent these aspects of the domain speci�cation of
product families.

All four of the modeling issues described here
have safety implications. Common variabilities
can be modeled as constrained commonalities

(e.g., invariants of the form \For all interferom-
eters, if the axis is not �xed, then the interfer-
ometer has an external metrology component").
Dependencies among variabilities can be mod-
eled as relationships among variabilities (i.e., as-
sertions) or as commonalities, where the terms
are parameters of variability. Variabilities can
be grouped in a hierarchical structure where the
product family members at a node share the val-
ues of certain parameters of variability. Those
variabilities not known until run-time can be dis-
tinguished and analyzed separately. In all these
modeling decisions, accurate representation of
the limitations on the commonalities (not over-
stating similarities) provides the strongest safe-
guard against the risks of reuse. Capturing de-
pendencies among variabilities protects against
inconsistent systems and provides a more com-
plete requirements model for further safety anal-
yses.

5.2 Results of Review

� Limits to a shared vocabulary. One of the un-
expected aspects of the review was that the lan-
guage in the documents specifying the reusable
software was not always familiar to the develop-
ers on a speci�c project. Some of the product
family requirements, written using the vocabu-
lary of the reusable software project, were found
to be ambiguous during the review, since each
project had a slightly di�erent vocabulary.

The glossary, produced as one of the �rst steps
in the process, was some help, but lacked preci-
sion in some entries. The obvious solution was
to introduce some degree of formal speci�cation
[5], and this was partially done with the SCR*
speci�cation. The unclear words or phrases were
also rewritten for reviewers into more precise
text. This was supplemented by the more for-
mal SCR description to serve as a reference for
future queries.

� Review decreased commonalities. The common-
alities and variabilities for the Delay Line compo-
nent were reviewed by an engineer with experi-
ence on interferometers. Nine of the twenty-nine
delay line commonalities were deleted after re-
view. It turned out to be very hard to write un-
ambiguous textual statements that all customers
agree will certainly apply to them. All nine of
these deleted commonalities were generally true,
however, and were added as variabilities.



This caused a re-evaluation of whether the tar-
geted subsystems did, in fact, form a product
family. The conclusion was that, based on the
SPC de�nitions as well as management percep-
tion, they did form a product family. The sim-
ilarities among the instantiations of these sub-
systems are both widespread and speci�c, en-
compassing requirement, architectural, and de-
sign commonalities.

� Review increased variabilities Conversely, after
review and update, the twenty-three variabili-
ties increased to thirty-�ve and four others were
modi�ed by additional information. The in-
crease in variabilities tended to a�rm the value
of the review from a safety perspective, since
these additional insights largely involved subtle
distinctions among interferometer components,
atypical interactions, or occasional modes. Cap-
turing these additional variabilities at the re-
quirements stage was the most signi�cant advan-
tage of the review.

5.3 Lessons Learned

The process of domain de�nition for the chosen inter-
ferometer components was fairly straightforward, and
largely followed the approach outlined in [21, 2, 22].
However, the e�ort experienced a lack of guidance
for making speci�c modeling decisions involving near-
commonalities and relationships among variabilities.

In part, this is due to the limited number of exam-
ples in the literature. There is an especial need for
more examples that deal with both variable system
con�gurations and variable inputs to that system. Al-
though the SPC guidebook discourages considering
runtime variations in the decision model, it is impos-
sible, as Weiss points out, to describe the required be-
havior without modeling those monitored variables.
Additional examples that are object-oriented would
also be welcome. Finally, as Miller has pointed out,
there is a need for more product family engineering to
describe how to model the requirements for an entire
family of products [17].

The modeling decisions that have safety implica-
tions, such as how to handle near-commonalities,
specifying dependencies among variabilities, and hi-
erarchies of variabilities within the product family,
were the most time-consuming and di�cult part of
the process. In general, thorough documentation of
the variabilities, even at the cost of minimizing pos-
sible commonalities, was chosen as the safest course
of action. Safe reuse depends on the underlying as-
sumptions of commonality being true.

The integration of the hazards analysis with the
product family approach contributed four derived
safety requirements to the product family require-
ments. Incorporation of these additional safety re-
quirements o�ers a standardized way to mitigate cer-
tain operational hazards in the delay line component.
The product family requirements were useful in

evaluation of both the design of reusable software
components and in the design of a speci�c delay line.
Requirements traceability from the product family
to the family members identi�ed both a variability
and three commonalities that were not fully trace-
able to the design, as well as errors and omissions in
the product family speci�cations. The product fam-
ily approach supports reuse; experience applying it to
the interferometer components suggests some ways in
which it can support safe reuse.

Acknowledgments

The author thanks Braden E. Hines for help in
understanding interferometers, Richard L. Johnson,
John Y. Lai, and Michael Deck for feedback on this
work and for their careful explanations, Frank J.
Humphrey for initial development of an SCR spec-
i�cation, and Mark A. Ardis for timely suggestions
regarding representation of relationships among vari-
ations.
The work described in this paper was carried out

at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.
Reference herein to any speci�c commercial prod-

uct, process, or service by tradename, trademark,
manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Govern-
ment or the Jet Propulsion Laboratory, California In-
stitute of Technology.

References

[1] Addy, Edward A., \A Framework for Performing
Veri�cation and Validation in Reuse-Based Soft-
ware Engineering," Annals of Software Engineer-
ing, Vol. 5, 1998.

[2] Ardis, Mark A. and David M. Weiss, \De�ning
Families: The Commonality Analysis," Tutorial,
International Conference on Software Engineering,
1997.

[3] Ardis, Mark A. and David Weiss, \Commonal-
ity Analysis: Principles and Practice, Introduction
and Overview Notebook," May 19, 1997.

[4] Dikel, David, David Kane, Steve Ornburn,
William Loftus, and Jim Wilson, \Applying Soft-



ware Product-Line Architecture," Computer , Au-
gust, 1997, pp. 49{55.

[5] Easterbrook, S., R. Lutz, R. Covington, J. Kelly,
Y. Ampo, and D. Hamilton, \Experiences Us-
ing Lightweight Formal Methods for Requirements
Modeling," IEEE Transactions on Software Engi-
neering, Vol. 24, No. 1, January, 1998, pp. 4{14.

[6] Gomaa, Hassan, \Reusable Software Require-
ments and Architectures for Families of Systems,"
Journal of Systems and Software, Vol. 28, No. 3,
March, 1995, pp. 189{202.

[7] Heitmeyer, C., A. Bull, C. Gasarch, and B.
Labaw (1995), \SCR: A Toolset for Specifying and
Analyzing Requirements," In Proceedings of the
10th Annual Conference on Computer Assurance,
IEEE, Gaithersburg, MD, pp. 109{122.

[8] JPL Internal Document, \QuIC Delay Line Com-
ponent," January 28, 1998.

[9] JPL Internal Document, \Delay Line Compo-
nent," January 28, 1998.

[10] JPL Internal Document, \Interferometry Technol-
ogy Program, Real-Time Control, Software Archi-
tecture Review," June 19, 1998.

[11] JPL Internal Document, \RICST Software
Overview," November 2, 1997.

[12] JPL Internal Document, \RICST Increment 2
Black Box Speci�cation," February 5, 1998.

[13] Lam, W., J. A. McDermid, and A. J. Vickers, \Ten
Steps Towards Systematic Requirements Reuse,"
Third IEEE International Symposium on Require-
ments Engineering, IEEE, Jan. 6-10, 1997, pp. 6{
15.

[14] Lau, Kenneth, M. Colavita, and M. Shao, \The
New Millennium Separated Spacecraft Interferom-
eter," Space Technology and Applications Inter-
national Forum (STAIF-97), Albuquerque, NM,
January 30, 1997.

[15] Leveson, N. G. (1995), Safeware: System Safety
and Computers, Addison-Wesley, Reading, MA.

[16] Lutz, Robyn, G. Helmer, M. Moseman, D.
Statezni, and S. Tockey, \Safety Analysis of Re-
quirements for a Product Family," Proceedings of
the Third IEEE International Conference on Re-
quirements Engineering (ICRE '98), April 6-10,
1998, Colorado Springs, CO.

[17] Miller, S. P. (1998), \Specifying the Mode Logic of
a Flight Guidance System in CoRE and SCR," 2nd
Workshop on Formal Methods in Software Prac-
tice, Clearwater Beach, FL.

[18] \NASA's Interferometry Program: The Search for
Life Beyond the Solar System: Some Facts and
Figures," June 16, 1997.

[19] Rushby, John, \Critical System Properties: Sur-
vey and Taxonomy," Reliability Engineering and
System Safety, Vol. 43, No. 2, 1994, pp. 189{214.

[20] Sanderson, Susan Walsh and Mustafa Uzumeri,
The Innovation Imperative: Strategies for Manag-
ing Product Models and Families, Chicago: Irwin
Professional Publishing, 1997.

[21] Software Productivity Consortium (Nov., 1993),
Reuse-Driven Software Processes Guidebook, SPC-
92019-CMC, v. 02.00.03.

[22] Weiss, D. M. (1997), \De�ning Families: The
Commonality Analysis," submitted for publica-
tion.

[23] Zave, Pamela and Michael Jackson, \Four
Dark Corners of Requirements Engineering,"
ACM Transactions on Software Engineering and
Methodology, Vol. 6, No. 1, January, 1997, pp. 1{
30.

[24] Zeilik, Michael, Stephen A. Gregory, and Elske
v. P. Smith, Introductory Astronomy and Astro-
physics, 3rd Ed., Ft. Worth: Saunders College
Publishing, 1992.


